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Abstract. The connection between the singular manifold method (Painlevé expansions
truncated at the constant term) and symmetry reductions of two members of a family of Cahn–
Hilliard equations is considered. The conjecture that similarity information for a nonlinear
partial differential equation may always be fully recovered from the singular manifold method
is violated for these equations, and is thus shown to be invalid in general. Given that several
earlier examples demonstrate the connection between the two techniques in some cases, it now
becomes necessary to establish when such a relationship exists—a question related to a deeper
understanding of Painlevé analysis. This issue is also briefly discussed.

1. Introduction

In the search for a complete characterization of theintegrability of nonlinear partial
differential equations (NLPDEs) attempts have been made to relate different properties of
soliton equations, such as the underlying Lie algebraic properties, the Hirota bilinearization
technique, and the Painlevé property [1, 2]. A more recent approach [3–6] has been to
broaden the scope to include non-integrable NLPDEs as well. In particular, these recent
efforts have recovered the symmetries of NLPDEs (obtained by either the method of
non-classical symmetries [7–9] or the less general technique proposed by Clarkson and
Kruskal [10–12]) from the apparently unrelated technique of singular manifold expansions
[1, 2, 13, 14] (or Painlev́e expansions truncated at the constant term). This connection
between the symmetry reductions and singular manifold expansions of NLPDEs has
been persuasively demonstrated (though not proved, as the authors of [3–6] mention) by
considering a large variety of NLPDEs. In all the cases considered to date, it is found that
the symmetry information may be completely recovered from the singular manifold method
and it has been conjectured that this may be the case for any NLPDE.

The purpose of the present paper is to consider this connection further in the context of
a family of Cahn–Hilliard equations. The Painlevé analysis [15] of this family of equations,
as well as their symmetry reductions obtained using both the Lie group and the Clarkson–
Kruskal direct technique [16] have been considered earlier. Here, we reconsider the results
of [15] and [16] more closely using the technique of [3–6] to explore the connection
between them. Somewhat to our surprise, and in contrast to earlier examples, we found
that the singular manifold method is unable to recover the symmetry information for these
equations. In the absence of any earlier proof that non-classical symmetries and the results
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of the singular manifold method are necessarily connected, this also serves to establish that
such a relationship need not exist. We shall comment further on this in section 5.

The rest of this paper is organized as follows. Section 2 briefly reviews the singular
manifold method (we shall follow [3–5], and abbreviate this henceforth as SMM). Sections 3
and 4 consider the connection between the SMM and the symmetry reductions for two
different members of the family of Cahn–Hilliard equations. In section 5, we present our
conclusions and discuss the results. The reader should also note that some statements in
[16] regarding the direct technique of Clarkson–Kruskal yielding the most general similarity
reductions of a NLPDE (following the claims in [10–12]) are now dated, having been
subsequently disproved [17, 18].

2. The singular manifold method

First, we briefly summarize the method. Further details may be found in [5, 13, 14]. The
singular manifold method (SMM) is based on the self-consistently truncated series solutions
of partial differential equations satisfying the Painlevé property (PP), or the conditional
Painlev́e property (CPP), in the form of

u =
α∑
j=0

uj (x, t)[φ(x, t)]
j−α = u0φ

α + u1φ
1−α + · · · + uα. (2.1)

Here,φ is the singular manifold, which makes (2.1) hold, anduj (x, t) are analytic functions
that are determined in terms ofφ through the recurrence relations obtained by substitution
of (2.1) into the corresponding partial differential equation (PDE).

We also introduce the following quantities, which are used throughout the paper:

c = φt

φx
(2.2)

v = φxx

φx
(2.3)

s = vx − v
2

2
. (2.4)

From the compatibility conditionsφxt = φtx andφxxt = φxtx , one obtains the following
relationships among the quantities,c, v, ands:

vt = (cx + vc)x (2.5)

st = cxxx + 2scx + csx. (2.6)

The PP (CPP) are invariant under homographic transformations ofφ [5, 19, 20]

φ→ aφ + b
cφ + d . (2.7)

Here, c and s are invariant under the M̈obius or homographic group (2.7), but notv.
Substituting (2.1) into the corresponding PDE, one can obtain the coefficientsuj in terms
of c, s, and v. Also, it follows from the substitution thatuα is a solution of the PDE,
which means that the ansatz (2.1) plays the additional role of being an auto-Bäcklund
transformation among two solutionsu and uα of the same PDE. Sinceuα is a solution
of the PDE, the singular manifold must satisfy an additional equation, which can always
be written as a relationship among the homographic invariants and their derivatives [5].
This last equation, together with (2.5) and (2.6), defines the singular manifold. They are
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called the singular manifold equations henceforth. Using this procedure we can express the
solutionuα in terms of the singular manifold quantities as

uα = uα(v, c, s) (2.8)

wherec ands must satisfy the singular manifold equations. Clearly, the SMM is applicable
to equations having both the Painlevé property (PP) or the conditional Painlevé property
(CPP).

3. Cahn–Hilliard equation for m= 1 and one spatial variable

In this section and the next, we shall apply the singular manifold method to the Cahn–Hilliard
equation with one spatial variable for the casesm = 1 and 2, respectively. Following the
procedure outlined by Estevez and co-workers [3–5], we shall then consider the connection
between the SMM and non-classical Lie group symmetries to see whether the latter are
derivable from the former.

The family of Cahn–Hilliard equations considered is

ut = [umux ]x − kuxxxx
with different values ofm for various cases of interest.

3.1. The singular manifold method

The Painlev́e analysis for the Cahn–Hilliard equations form = 1

ut − u2
x − uuxx + kuxxxx = 0 (3.1)

has already been carried out [15]. This equation possesses the CPP. The SMM allows us
to write a truncated solutionu′ for (3.1). Let

u′ = u0φ
−2+ u1φ

−1+ u. (3.2)

Substitution of (3.2) into (3.1) yields a set of coupled partial differential equations order by
order in powers ofφ from O(φ−6) to O(φ0). Solving the first two yields

u0 = 12k φ2
x (3.3)

u1 = −12k φxx. (3.4)

Using (3.3) and (3.4) in (3.2),u′ can be written as

u′ = u− 12k

(
φx

φ

)
x

(3.5)

whereu must be another solution of (3.1) andφ is the singular manifold. Substituting (3.3)
and (3.4) into the equations at the following four orders O(φ−4) to O(φ0), and using the
quantitiesv, s, andc defined in (2.2)–(2.4) yields the set of equations

u = 4ks + 3kv2 (3.6)

c + ksx = 0 (3.7)

2(cx + ksxx)+ 3φxx
φx

(c + ksx) = 0 (3.8)

cxx + 2V (cx + ksxx)+ ksxxx +
(
s + 3V 2

2

)
(c + ksx) = 0. (3.9)
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Using (3.7), (3.8) and (3.9), we have

cx + ksxx = 0 (3.10)

cxx + ksxxx = 0. (3.11)

Compatibility of c ands yields

st = cxxx + 2cxs + csx (3.12)

which, with (3.7), yields

st + ksxxxx + 2kssxx + ks2
x = 0. (3.13)

Using (3.6) and (3.7), the equation at O(φ0) yields

st + ksxxxx + 2kssxx + ks
2
x

2
= 0. (3.14)

Thus, from (3.13) and (3.14), the singular manifoldφ is overdetermined and

sx = 0. (3.15)

Hence, using (3.7),

c = 0. (3.16)

Also, by either (3.13) or (3.14),

st = 0. (3.17)

Taken together, (3.15) and (3.17) imply thats = constant.
Following Estevez and coworkers [3–5], we shall eliminatev from the equations because

it is not a homographic invariant. From (3.6)

v2 = 1

3

(u
k
− 4s

)
(3.18)

vx = s

3
+ u

6k
. (3.19)

We also need the quantitiesux andut , which with the help of (2.5), (2.6), (3.15), and
(3.17)–(3.19), are found to be

ux = 2kvs + uv (3.20)

ut = 2ucx − 8kscx + v[6kcxx + 2kcs + uc]. (3.21)

3.2. The SMM and the non-classical method

To establish the relationship between the SMM and the non-classical symmetries, the sym-
metry condition requires that the vector field components{ξ(x, t, u); τ(x, t, u); η(x, t, u)}
satisfy the invariant surface condition [7–9]

ξ(x, t, u)ux + τ(x, t, u)ut = η(x, t, u). (3.22)

Comparing (3.20) and (3.21) with (3.22) shows thatξ and τ must be such that the result
of substituting (3.20) and (3.21) into (3.22) should only be dependent on the homographic
invariantsc ands. Suppressing thev terms requires

ξ(2ks + u)+ τ(6kcxx + 2kcs + uc) = 0 (3.23)

or equivalently

ξ + cτ = 0 (3.24)

cxx = 0. (3.25)
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Equation (3.25) is satisfied automatically sincec = 0. Hence, from (3.24), we getξ = 0
andτ arbitrary.

Putting the above results together, the generators of the infinitesimal Lie group are

ξ = 0 (3.26)

τ = h(x, t, u) (3.27)

η = 0 (3.28)

whereh is an arbitrary function.
Unlike the fairly large number of NLPDEs considered in [3–6], these symmetries are

not the same as those obtained from the classical and non-classical Lie group methods. The
general Lie symmetry group (which in this case are just classical translations and dilations
(scalings)) is [16]

ξ(x, t) = αx + β (3.29)

τ(x, t) = 4αt + γ (3.30)

η(x, t, u) = −2αu (3.31)

whereα, β, andγ are arbitrary coefficients.

4. Cahn–Hilliard equation for m= 2 with one spatial variable

In this section, we consider the relation between the SMM and the method of non-classical
symmetries for them = 2 Cahn–Hilliard equation.

4.1. The singular manifold method

The Painlev́e property for the Cahn–Hilliard equations form = 2

ut − 2uu2
x − u2uxx + kuxxxx = 0 (4.1)

has been studied in [15]. The equation possesses the conditional Painlevé property (CPP).
The truncated Painlevé expansion of (4.1) can be defined through the auto-Bäcklund
transformation:

u′ = u0φ
−1+ u. (4.2)

Substitution of (4.2) into (4.1) yields a set of coupled partial differential equations order by
order in powers ofφ from O(φ−5) to O(φ0). Solving the first of these yields

u0 =
√

6kφx. (4.3)

Thus, we have the auto-Bäcklund transformation

u′ =
√

6k
φx

φ
+ u (4.4)

whereu must be another solution of (4.1). Substituting (4.3) into the equations at O(φ−4)

to O(φ0) and using the quantitiesv, s, andc yields the set of equations

u = −
√

6k

2
v (4.5)

s = 0 (4.6)

2ksx + 3kvs + c = 0 (4.7)

2ksxx + 4kvsx + 2cx + 2ks2+ 3kv2s + 2vc = 0 (4.8)
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2v(cx + cv)− 2(cxx + 2vcx + cs + 3
2cv

2)+ 10kv3s + 7kv2sx

−2kvs2− 6kv3s − 6kssx − 9v2sx − 2kvsxx − 2ksxxx = 0. (4.9)

By (4.6),

c = 0. (4.10)

Thus, (4.8) and (4.9) become identities. Using (4.5), we have

v = − 2√
6k
u. (4.11)

Next, (2.4), (4.6), and (4.11) yield

vx = 1

3k
u2. (4.12)

We also need the quantitiesux andut . Using (2.5), (4.10), and (4.12), these are

ux = −
√

1

6k
u2 (4.13)

ut = 0. (4.14)

4.2. The SMM and the non-classical method

As in section 3.2, we next consider the connection of the SMM to the method of non-classical
symmetries. The substitution of (4.13) and (4.14) into the surface invariant condition

ξ(x, t, u)ux + τ(x, t, u)ut = η(x, t, u)
leads to

η(x, t, u) = −ξ
√

1

6k
u2. (4.15)

Thus, the generators of the infinitesimal Lie group are

ξ = f (x, t, u) (4.16)

τ = g(x, t, u) (4.17)

η(x, t, u) = −ξ
√

1

6k
u2 (4.18)

wheref andg are arbitrary functions.
For this equation the non-classical symmetries with the SMM are, once again, not

the same as those determined through the classical and non-classical Lie methods. The
general Lie group (which in this case are just classical translations and dilations (scalings))
generators are [16]

ξ(x, t) = αx + β (4.19)

τ(x, t) = 4αt + γ (4.20)

η(x, t, u) = −αu (4.21)

whereα, β, andγ are arbitrary coefficients. Again, this is in contrast to the various NLPDEs
considered in [3–6].



Non-classical symmetries and singular manifold method revisited 1493

5. Conclusions and discussion

The Cahn–Hilliard equation withm = 1 and 2 considered in sections 3 and 4 provides
examples of NLPDEs for which the SMM is not versatile or general enough to recover all
information regarding the symmetry properties of the equation. As mentioned, this is in
contrast to the large number of examples considered in [3–6] where the relationship between
the SMM and the symmetry reductions has been examined and found to hold. However,
as conjectured in [3–6], these examples only served to indicate that there might indeed
always be such a connection. To date, there does not exist any proof that the SMM is
indeed always guaranteed to recover all symmetry reductions of any NLPDE having either
the Painlev́e or conditionally Painlev́e property. As such, the examples in sections 3 and
4 serve to establish the converse, i.e. one cannot always recover symmetry information for
an arbitrary NLPDE from the SMM.

Of course, such a connection does indeed exist for some NLPDEs, as the examples in
[3–6] clearly demonstrate. However, it now becomes necessary to establish when this is
indeed the case. Clearly, this is related to the difficult issue of a complete understanding
of Painlev́e analysis. While it is not the purpose of this paper to address this question,
we should like to conclude by making some preliminary observations concerning features
which might make such a connection hard to establish, or unlikely, or even non-existent.
One requirement for the implementation of the technique proposed in [3–5] appears to be
that after substitution ofux and ut in the surface invariant condition, one should be able
to solve for the homographic invariantc (in terms ofu andη) for use in the compatibility
condition (2.6). If this is hard, then the implementation of the method of [3–5] to establish
the connection between the SMM and the symmetries is difficult to accomplish. This makes
the establishment of such a connection non-obvious using the technique of [3–5]. However,
whether it also indicates the non-existence of such a connection for the given NLPDE, or
simply points to the need for an alternative technique remains to be investigated. It appears
that the choices of NLPDEs in [3–6] fortuitously resulted in SMM equations where the
technique could be implemented. However, examples of the opposite are not hard to find.
For instance, for theφ4 equation [21], the equations forux andut (following the procedure
in section 3) are

ux =
(

2

1− c2

)[√
1− c2

2

u2

2
+
(

1− c2

2

)3/2

s − uccx
]

ut = −
(

1− c2

2

)−1

ucct +
(

1− c2

2

)1/2

cxx + ucx +
(

1− c2

2

)1/2

cs + c
2

(
1− c2

2

)−1/2

u2.

Solving for c (for substitution in (2.6)) in terms ofu andη after substitution of these in the
surface invariant condition is virtually impossible in this case. For the long-wave equations
[22], the equations are even more complex and implementation of the technique of [3–5] is
even harder!
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